High Level Computer Vision

Adversarial Networks & Applications

Bernt Schiele - schiele@mpi-inf.mpg.de
Mario Fritz - mfritz@mpi-inf.mpg.de

https://www.mpi-inf.mpg.de/hlcv
 Discriminative deep learning

- Recipe for success
Generative modeling

- Have training examples \(x \sim p_{data}(x) \)
- Want a model that can draw samples: \(x \sim p_{model}(x) \)
- Where \(p_{model} \approx p_{data} \)
Generative Adversarial Networks (GANs)

Ian Goodfellow, OpenAI Research Scientist
NIPS 2016 tutorial
Barcelona, 2016-12-4
Generative Modeling

- Density estimation

- Sample generation

Training examples Model samples

(Goodfellow 2016)
Why study generative models?

- Excellent test of our ability to use high-dimensional, complicated probability distributions
- Simulate possible futures for planning or simulated RL
- Missing data
 - Semi-supervised learning
- Multi-modal outputs
- Realistic generation tasks

(Goodfellow 2016)
Realistic image generation

Progressive Growing of GANs for Improved Quality, Stability, and Variation
Karras et. al, ICLR 2018

High-Resolution Image Synthesis and Semantic Manipulation with Conditional GANs
Wang et. al, CVPR 2018
Single Image Super-Resolution

original
bicubic
(21.59dB/0.6423)
SRResNet
(23.44dB/0.7777)
SRGAN
(20.34dB/0.6562)

(Ledig et al 2016)
Image to Image Translation

(Isola et al 2016)

(Goodfellow 2016)
Image Manipulation

Stargan, Choi et.al, CVPR 2018
Roadmap

- Why study generative modeling?
- How do generative models work? How do GANs compare to others?
- How do GANs work?
- Tips and tricks
- Research frontiers
- Combining GANs with other methods

(Goodfellow 2016)
Maximum Likelihood Method

- Learning = Estimation of parameter θ (given data X)

- Likelihood of θ
 - defined as the probability of the data X being generated from the model distribution with parameter θ
 - Likelihood $L(\theta)$: $L(\theta) = p(X|\theta)$
Maximum Likelihood Method

• Calculation of Likelihood
 ‣ a single datapoint: \(p(x_n | \theta) \)
 ‣ assume: all N data points are independent
 - data points are i.i.d = independent identically distributed

\[
L(\theta) = p(X | \theta) = \prod_{n=1}^{N} p(x_n | \theta)
\]

• often used is log-likelihood:
 ‣ often easier to calculate and manipulate

\[
E = -\ln L(\theta) = - \sum_{n=1}^{N} \ln p(x_n | \theta)
\]

• parameter estimation = learning
 ‣ maximize likelihood or log-likelihood or
 ‣ minimize negative log-likelihood
Maximum Likelihood

$$\theta^* = \arg \max_\theta \mathbb{E}_{x \sim p_{data}} \log p_{model}(x \mid \theta)$$
Taxonomy of Generative Models

Maximum Likelihood

- Explicit density
 - Fully visible belief nets
 - NADE
 - MADE
 - PixelRNN
 - Change of variables
 - Models (nonlinear ICA)

- Implicit density
 - Variational density
 - Variational autoencoder
 - Boltzmann machine

- Markov Chain
 - GSN

Direct GAN

(Goodfellow 2016)
Fully Visible Belief Nets

- Explicit formula based on chain (Frey et al, 1996) rule:

\[p_{\text{model}}(\mathbf{x}) = p_{\text{model}}(x_1) \prod_{i=2}^{n} p_{\text{model}}(x_i | x_1, \ldots, x_{i-1}) \]

- Disadvantages:
 - \(O(n)\) sample generation cost
 - Generation not controlled by a latent code

PixelCNN elephants
(van den Ord et al 2016)
Variational Autoencoder
(Kingma and Welling 2013, Rezende et al 2014)

$$\log p(x) \geq \log p(x) - D_{KL}(q(z) \parallel p(z \mid x))$$
$$= \mathbb{E}_{z \sim q} \log p(x, z) + H(q)$$

Disadvantages:
- Not asymptotically consistent unless q is perfect
- Samples tend to have lower quality

CIFAR-10 samples
(Kingma et al 2016)
GANs

- Use a latent code
- Asymptotically consistent (unlike variational methods)
- No Markov chains needed
- Often regarded as producing the best samples
 - No good way to quantify this

(Goodfellow 2016)
Roadmap

- Why study generative modeling?
- How do generative models work? How do GANs compare to others?
- How do GANs work?
- Tips and tricks
- Research frontiers
- Combining GANs with other methods
Adversarial nets framework

Real data samples

"Fake" Generated Samples

Discriminator

Classify as real (1) or fake (0)

Backpropagate

Generated progressively learning
Generator Network

\[x = G(z; \theta^{(G)}) \]

- Must be differentiable
- No invertibility requirement
- Trainable for any size of \(z \)
- Some guarantees require \(z \) to have higher dimension than \(x \)
- Can make \(x \) conditionally Gaussian given \(z \) but need not do so

(Goodfellow 2016)
Training Procedure

- Use SGD-like algorithm of choice (Adam) on two minibatches simultaneously:
 - A minibatch of training examples
 - A minibatch of generated samples
- Optional: run k steps of one player for every step of the other player.
Minimax Game

\[
J^{(D)} = -\frac{1}{2} \mathbb{E}_{x \sim p_{\text{data}}} \log D(x) - \frac{1}{2} \mathbb{E}_{z} \log (1 - D(G(z)))
\]

\[
J^{(G)} = -J^{(D)}
\]

- Equilibrium is a saddle point of the discriminator loss
- Resembles Jensen-Shannon divergence
- Generator minimizes the log-probability of the discriminator being correct

(Goodfellow 2016)
Exercise 1

\[J^{(D)} = -\frac{1}{2} \mathbb{E}_{x \sim p_{\text{data}}} \log D(x) - \frac{1}{2} \mathbb{E}_{z} \log (1 - D(G(z))) \]

\[J^{(G)} = -J^{(D)} \]

- What is the solution to \(D(x) \) in terms of \(p_{\text{data}} \) and \(p_{\text{generator}} \)?

- What assumptions are needed to obtain this solution?
Solution

- Assume both densities are nonzero everywhere

- If not, some input values x are never trained, so some values of $D(x)$ have undetermined behavior.

- Solve for where the functional derivatives are zero:

\[
\frac{\delta}{\delta D(x)} J^{(D)} = 0
\]

(Goodfellow 2016)
Discriminator Strategy

Optimal $D(x)$ for any $p_{\text{data}}(x)$ and $p_{\text{model}}(x)$ is always

$$D(x) = \frac{p_{\text{data}}(x)}{p_{\text{data}}(x) + p_{\text{model}}(x)}$$

Estimating this ratio using supervised learning is the key approximation mechanism used by GANs.
Learning process

\[p_D(\text{data}) \rightarrow \text{Data distribution} \rightarrow \text{Model distribution} \]

Poorly fit model
Learning process

\[p_D(\text{data}) \]

Data distribution

Model distribution

Poorly fit model

After updating D
Learning process

\(p_D(\text{data}) \)

Data distribution

Model distribution

Poorly fit model

After updating D

After updating G
Learning process

\(p_D(\text{data}) \)

Data distribution

Model distribution

Poorly fit model

After updating D

After updating G

Mixed strategy equilibrium
Non-Saturating Game

\[J^{(D)} = -\frac{1}{2} E_{x \sim p_{\text{data}}} \log D(x) - \frac{1}{2} E_{z} \log (1 - D(G(z))) \]

\[J^{(G)} = -\frac{1}{2} E_{z} \log D(G(z)) \]

- Equilibrium no longer describable with a single loss
- Generator maximizes the log-probability of the discriminator being mistaken
- Heuristically motivated; generator can still learn even when discriminator successfully rejects all generator samples

(Goodfellow 2016)
Overcoming instabilities in training GANs

Architectural Improvements
DCGAN Architecture

Most “deconvs” are batch normalized

- First stable architecture for generators which works across datasets

- However, limited to smaller resolutions

(Radford et al 2015)

(Goodfellow 2016)
DCGANs for LSUN Bedrooms

(Radford et al 2015)
Progressive growing of GANs (Karras et. al ICLR 2018)

- DCGAN architecture struggles beyond 128x128 resolutions
- Why is higher resolution hard
 - Discrimination task is easier at higher resolutions.
 - Easy to detect artifacts and defects in the generated samples
- Solution: Start training at lower resolutions and progressively increase the resolution.
Progressive growing of GANs (Karras et. al ICLR 2018)

- Mix-in the new layer gradually

- Change α from 0 to 1 gradually
Can generate at 1024x1024 resolution
Overcoming instabilities in training GANs

Better loss functions
Standard GAN is hard to train!

• Gradients are unstable
 ‣ After a few epochs of training, discriminator gets near perfect.
 ‣ This leads to generator having close to zero gradients or exploding gradients (using non-saturating loss).

• Mode collapse

![Figure from “Unrolled generative adversarial networks”, Metz et. al, ICLR 2017](image-url)
Why the instabilities?

- The minmax game minimizes Jensen-Shannon divergence.
- JSD is the average of KL divergences.

\[
K_{\text{L}}(P_r \parallel P_g) = \int_{x} P_r(x) \log \frac{P_r(x)}{P_g(x)} \, dx
\]

\[
\text{JSD}(P_r \parallel P_g) = 0.5 \, \text{KL}(P_r \parallel Q) + 0.5 \, \text{KL}(P_g \parallel Q)
\]

- When the support of the two distributions don’t overlap JSD is constant.

\[
\begin{align*}
P_{G_0} & \quad \longleftrightarrow \quad P_{\text{data}} \quad \longleftrightarrow \quad P_{G_1} \quad \longleftrightarrow \quad P_{\text{data}} \quad \cdots \quad P_{G_{100}} & \quad \longleftrightarrow \quad P_{\text{data}}
\end{align*}
\]

\[
\begin{align*}
\text{JS}(P_{G_0}, P_{\text{data}}) &= \log 2 \\
\text{JS}(P_{G_1}, P_{\text{data}}) &= \log 2 \\
\cdots & \\
\text{JS}(P_{G_{100}}, P_{\text{data}}) &= 0
\end{align*}
\]

- Intuitively: If the supports don’t overlap, binary classifier is perfect!
Solution - Use a better metric: Wasserstein distance

- Earth mover's distance or Wasserstein distance
- Intuitively: Minimum amount of “mass” you need to transport to make $P_g = P_r$

$$W(P_r, P_g) = \inf_{\gamma \in \Pi(P_r, P_g)} E(x, y) \sim \gamma \left[\| x - y \| \right]$$

Many ways to move the mass. Choose the most efficient way to define the distance.
Is wasserstein distance really better?

\[J_S(P_{G_0}, P_{data}) = \log 2 \]
\[W(P_{G_0}, P_{data}) = d_0 \]

\[J_S(P_{G_{50}}, P_{data}) = \log 2 \]
\[W(P_{G_{50}}, P_{data}) = d_{50} \]

\[J_S(P_{G_{100}}, P_{data}) = 0 \]
\[W(P_{G_{100}}, P_{data}) = 0 \]

Figure credit: Hung-yi Lee
How do you compute it: Wasserstein GAN

• Use the dual for for wasserstein distance

\[
W(\mathbb{P}_r, \mathbb{P}_\theta) = \sup_{\|f\|_L \leq 1} \mathbb{E}_{x \sim \mathbb{P}_r}[f(x)] - \mathbb{E}_{x \sim \mathbb{P}_\theta}[f(x)]
\]

 ‣ Here f is family of 1-Lipschitz functions

• K-Lipschitz functions
 ‣ Slope never exceeds K. Basically a smoothness constraint on the function f(x)

• Use neural networks to approximate f → Wasserstein GAN formulation.
Wasserstein GAN (Arjovsky et. al, ICML 2017)

- Discriminator maximizes the loss function

\[
V(G, D) = \max_{D \in 1-Lipschitz} \{E_{x \sim P_{data}}[D(x)] - E_{x \sim P_{G}}[D(x)]\}
\]

D has to be smooth enough.

- Generator minimizes \(V(G, D)\)

- Comparing to standard GAN, **log is removed** from the loss and there is **no non-linearity at the output** of D.

![Figure credit: Hung-yi Lee](Hung-yiLee.png)

They don’t move.

Wasserstein GAN
Enforcing the Lipschitz constraint on D

• **Weight clipping** (Arjovsky et. al, ICML 2017)
 ‣ All parameters of the discriminator constrained to be in a box \([-c, c]\)
 ‣ Difficult to find the right value for c for different problems.

• **Gradient penalty** (Improved training of WGAN, Gulrajani et. al, NIPS 2017)
 ‣ Constrain the gradients of the discriminator w.r.t the input to be small
 \[\lambda \mathbb{E}_{\hat{x} \sim \mathcal{P}_x} \left[\left(\| \nabla_{\hat{x}} D(\hat{x}) \|_2 - 1 \right)^2 \right] \]
 ‣ Ideally should be everywhere in the image space, but too expensive.
 ‣ Impose the penalty only on a line between generated sample and real sample
Comparing Standard GAN and WGAN

<table>
<thead>
<tr>
<th></th>
<th>DCGAN</th>
<th>LSGAN</th>
<th>WGAN (clipping)</th>
<th>WGAN-GP (ours)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G: No BN and a constant number of filters, D: DCGAN</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G: 4-layer 512-dim ReLU MLP, D: DCGAN</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No normalization in either G or D</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gated multiplicative nonlinearities everywhere in G and D</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>tanh nonlinearities everywhere in G and D</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>101-layer ResNet G and D</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

WGAN-GP is stable to architectural changes.
Learning What and Where to Draw

Scott Reed1,3, Zeynep Akata2, Santosh Mohan1, Samuel Tenka1, Bernt Schiele2, Honglak Lee1
Motivation

a pitcher is about to throw the ball to the batter.

What object is meant to be drawn here? Can we control its location?
Idea: condition on location in addition to text

1. Bounding box

 ![Bounding box example](image1)

 This bird is completely black.

2. Keypoints, e.g. 15 parts of a bird

 ![Keypoint example](image2)

 This bird is bright blue.
Text-conditional GAN

$$\min_G \max_D V(D, G) = \mathbb{E}_{x,t \sim p_{data}(x,t)}[\log D(x, t)] + \mathbb{E}_{z \sim p_z(z), t \sim p_{data}(t)}[\log(1 - D(G(z, t)))].$$

- The discriminator D tries to distinguish real (text, image) pairs from synthetic.
- The generator G tries to fool D.
Text-conditional GAN

This flower has small, round violet petals with a dark purple center

$z \sim \mathcal{N}(0, 1)$

Generator Network
Text-conditional GAN

This flower has small, round violet petals with a dark purple center

$z \sim \mathcal{N}(0, 1)$

Generator Network
Text-conditional GAN

This flower has small, round violet petals with a dark purple center

$z \sim \mathcal{N}(0, 1)$

Generator Network

Discriminator Network

This flower has small, round violet petals with a dark purple center
Conditioning on bounding box

A red bird with a black face

Generator Network
Conditioning on bounding box

Spatial replicate, crop to bbox

A red bird with a black fa

Generator Network
Conditioning on bounding box

Generator Network
Conditioning on bounding box

Spatial replicate, crop to bbox

A red bird with a black face

\(z \sim \mathcal{N}(0, 1) \)

Generator Network
Conditioning on bounding box

Generator Network
Conditioning on bounding box

Spatial replicate, crop to bbox

A red bird with a black face

$z \sim \mathcal{N}(0, 1)$

Local

Global

depth concat

Generator Network
Conditioning on bounding box

Generator Network

Discriminator Network

A red bird with a black face

$z \sim \mathcal{N}(0, 1)$
Moving the bird around with bounding box (noize z fixed)

Caption

This bird has a black head, a long orange beak and yellow body.
Moving the bird around with bounding box (noize z fixed)

Caption: This bird has a black head, a long orange beak and yellow body.
Moving the bird around with bounding box (noize z fixed)

Caption

This bird has a black head, a long orange beak and yellow body.

GT

Translation
Moving the bird around with bounding box (noize z fixed)

<table>
<thead>
<tr>
<th>Caption</th>
<th>GT</th>
</tr>
</thead>
<tbody>
<tr>
<td>This bird has a black head, a long orange beak and yellow body</td>
<td></td>
</tr>
</tbody>
</table>
Moving the bird around with bounding box (noize z fixed)

<table>
<thead>
<tr>
<th>Caption</th>
<th>GT</th>
<th>Shrinking</th>
<th>Translation</th>
<th>Stretching</th>
</tr>
</thead>
<tbody>
<tr>
<td>This bird has a black head, a long orange beak and yellow body</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>This large black bird has a pointy beak and black eyes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>This small blue bird has a short pointy beak and brown patches on its wings</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Moving the bird around with key points (noize z fixed)

Caption
This bird has a black head, a long orange beak and yellow body
Moving the bird around with key points (noize z fixed)

Caption

This bird has a black head, a long orange beak and yellow body.

GT

Translation
Moving the bird around with key points (noize \(z \) fixed)

Caption

This bird has a black head, a long orange beak and yellow body

GT

Stretching
Moving the bird around with key points (noize z fixed)

Caption

This bird has a black head, a long orange beak and yellow body.

This large black bird has a pointy beak and black eyes.

This small blue bird has a short pointy beak and brown patches on its wings.
Deep Model Adaptation using Domain Adversarial Training

Victor Lempitsky,

joint work with Yaroslav Ganin

Skoltech

Skolkovo Institute of Science and Technology (Skoltech)

Moscow region, Russia
Deep supervised neural networks

- are a “big thing” in computer vision and beyond
- are hungry for labeled data
Where to get the data?

Lots of modalities do not have large labeled data sets:
- Biomedical
- Unusual cameras / image types
- Videos
- Data with expert-level annotation (not mTurkable)
-

Surrogate training data often available:
- Borrow from adjacent modality
- Generate synthetic imagery (computer graphics)
- Use data augmentation to amplify data *(image-based rendering, morphing, re-synthesis,)*

Resulting training data are shifted. *Domain adaptation* needed.
Example: Internet images -> Webcam sensor

[Saenko et al. ECCV2010]

Deep Model Adaptation using Domain Adversarial Training
Assumptions and goals

- Lots of labeled data in the source domain (e.g. synthetic images)
- Lots of unlabeled data in the target domain (e.g. real images)
- **Goal:** train a deep neural net that does well on the target domain

Large-scale deep unsupervised domain adaptation
Domain shift in a deep architecture

\[f = G_f(x; \theta_f) \]
\[y = G_y(f; \theta_y) \]

When trained on source only, feature distributions do not match:

\[S(f) = \{ G_f(x; \theta_f) \mid x \sim S(x) \} \]
\[T(f) = \{ G_f(x; \theta_f) \mid x \sim T(x) \} \]
Idea 1: domain-invariant features wanted

Feature distribution without adaptation:

Our goal (after adaptation):
Idea 2: measuring domain shift

Domain classifier:

\[d = G_d(f; \theta_d) \]

Domain loss low

Domain loss high

Deep Model Adaptation using Domain Adversarial Training
Learning with adaptation

1. Build this network
2. Train **feature extractor + class predictor** on source data
3. Train **feature extractor + domain classifier** on source+target data
4. Use **feature extractor + class predictor** at test time

Deep Model Adaptation using Domain Adversarial Training
Idea 3: minimizing domain shift

Emerging features:
- Discriminative (good for predicting y)
- Domain-invariant (not good for predicting d)
Saddle point interpretation

Our objective (small label prediction loss + large domain classification loss wanted)

$$E(\theta_f, \theta_y, \theta_d) = \sum_{i=1..N}^{d_i=0} L_y^i(\theta_f, \theta_y) - \lambda \sum_{i=1..N} L_d^i(\theta_f, \theta_d)$$

The backprop converges to a saddle point:

$$(\hat{\theta}_f, \hat{\theta}_y) = \arg \min_{\theta_f, \theta_y} E(\theta_f, \theta_y, \theta_d)$$

$$\hat{\theta}_d = \arg \max_{\theta_d} E(\hat{\theta}_f, \hat{\theta}_y, \theta_d).$$

Similar idea for generative networks:

Initial experiments: baselines

Upper bound: training on target domain with labels

Shallow adaptation baseline: [Fernando et al., Unsupervised visual domain adaptation using subspace alignment. ICCV, 2013] applied to the last-but-one layer

Lower bound: training on source domain only
Example: from synthetic to real

“Windows digits”

“House numbers”

Deep Model Adaptation using Domain Adversarial Training
Office dataset

[Saenko et al. ECCV2010]

Deep Model Adaptation using Domain Adversarial Training
Results on Office dataset

<table>
<thead>
<tr>
<th>Method</th>
<th>Source Target</th>
<th>Amazon Webcam</th>
<th>DSLR Webcam</th>
<th>Webcam DSLR</th>
</tr>
</thead>
<tbody>
<tr>
<td>GFK (PLS, PCA) (Gong et al., 2012)</td>
<td></td>
<td>.197</td>
<td>.497</td>
<td>.6631</td>
</tr>
<tr>
<td>SA* (Fernando et al., 2013)</td>
<td></td>
<td>.450</td>
<td>.648</td>
<td>.699</td>
</tr>
<tr>
<td>DLID (Chopra et al., 2013)</td>
<td></td>
<td>.519</td>
<td>.782</td>
<td>.899</td>
</tr>
<tr>
<td>DDC (Tzeng et al., 2014)</td>
<td></td>
<td>.618</td>
<td>.950</td>
<td>.985</td>
</tr>
<tr>
<td>DAN (Long and Wang, 2015)</td>
<td></td>
<td>.685</td>
<td>.960</td>
<td>.990</td>
</tr>
<tr>
<td>Source only</td>
<td></td>
<td>.642</td>
<td>.961</td>
<td>.978</td>
</tr>
<tr>
<td>DANN</td>
<td></td>
<td>.730</td>
<td>.964</td>
<td>.992</td>
</tr>
</tbody>
</table>

Caveats

- Domains should not be too far apart
- Early on, the gradient from the domain classification loss should not be too strong
- The trick used to obtain the results: gradually increase λ from 0 to 1
Conclusion

- Scalable method for deep unsupervised domain adaptation
- Based on simple idea. Takes few lines of code (+ defining a specific network architecture). *Caffe* implementation available.
- State-of-the-art results
- Unsupervised parameter tuning is easy (look at the domain classifier error)
- Main challenge: initialization and stepsize

http://sites.skoltech.ru/compvision/projects/grl/
Unsupervised Image Translation

Cycle GAN

Star GAN
Unpaired data

- Easy to get unpaired data. But can’t do supervised learning
- Idea: use domain classifiers to get weak supervision.
Learn from classifier: GAN framework

Figure credit: Hung-yi Lee
Learning from classifier is not sufficient

Figure credit: Hung-yi Lee
Use cycle consistency principle: Cycle GAN

(Zhu et. al ICCV 2017)

Figure credit: Hung-yi Lee
Results

• Impressive visual results

• Caveat! Needs a separate generator for every ordered pair of domains.

• Not scalable.
Stargan (Choi et.al, CVPR 2018)

- Use a multi-class discriminator and a single generator.
- Condition the generator on the target domain, along with the input image.
Allows single model to map from different domains

- Manipulating the target domain condition, generator can map input image to different domains.